Каталог Минералов
 

Тепло и грунты


Грунтоведение / Тепло и грунты
обсудить на форуме

Еще в древности люди спасались от холода в землянках и пещерах. Позднее появились деревянные и каменные дома, но сооружения в грунтах и поныне служат человеку. Это связано с тем, что сухие грунты обладают малой теплопроводностью. Давайте сравним между собой ее величину для разных пород. Мы увидим, что относительно воды теплопроводность сухого песка в 3, сухого суглинка в 4, а такого же торфа, в 6 раз меньше.

Однако она увеличивается в 4—10 раз, если грунт становится водонасыщенным. Это происходит от того, что воздух, заполняющий поры, имеет в 28 раз меньшую величину теплопроводности, чем вода. Ученые установили, что чем больше в рыхлом грунте крупных частиц (галечниковых, гравийных и песчаных), тем значительнее величина теплопроводности. Вот почему песок быстрее проводит тепло, чем суглинок.

В скальных грунтах: гранитах, базальтах, известняках, песчаниках и других — проводимость тепла оказывается более высокой. Так, в граните она примерно в 3—7 раз, а в базальте в 2—5 раз выше, чем в воде.

Пожалуй, «чемпион» по теплопроводности — плотные метаморфические породы. Так, кварцит, состоящий из мелкозернистых кристаллов кварца, может почти в 11 раз лучше проводить тепло, чем вода. Положительным свойством грунтов является меньшая способность к проведению тепла сверху вниз (по вертикали) по сравнению с горизонтальным направлением (вдоль пласта), что имеет большое значение при различных природных процессах.

Прежде всего от этого свойства зависит глубина зимнего промерзания массивов. Она колеблется от десятков сантиметров на юге до 3 м на севере. Вместе с тем в одном климатическом районе величина зоны промерзания может значительно изменяться (в случае различной теплопроводности грунтов).

Способность к проведению тепла в некоторой мере определяет глубину проникновения выветривания и процессов образования почв, связанных с колебаниями температуры.

Наконец, от теплопроводности вечномерзлых грунтов в какой-то степени зависит взаимодействие их с фундаментами сооружений. При использовании грунтов для теплоизоляционных целей важна еще одна характеристика — способность грунтов поглощать тепло. Иначе говоря, теплоемкость. Из физики известно, что вода при 20°С обладает довольно высокой теплоемкостью.

Если сравнить с этой величиной способность поглощать тепло различными грунтами, то окажется, что торф имеет в 2, гранит, глина и песок в 5, а гипс в 4 раза меньшую теплоемкость. При этом чем выше их влажность, тем больше и теплоемкость. Если в грунтах увеличивается количество воздуха, который поглощает тепло в 3 раза меньше воды, то теплоемкость грунтов уменьшается. Однако в связи с малым содержанием воздуха его влияние не учитывается. Определение этого показателя имеет важное значение для практики.

Остановимся еще на одной необычной способности грунта — становиться при смачивании источником тепла. Оказывается, если увлажнять сухой глинистый грунт, происходит выделение теплоты смачивания. Она появляется в результате перехода воды в грунте в связанное состояние (точнее, в прочносвязанное).

В песках теплота смачивания не выше 4 Дж на 1 г грунта. Но зато в тяжелых глинах, богатых тонкими частицами, выделяется 32—100 Дж из такого же количества образца.

Разница в количестве образующегося тепла связана с минеральным составом грунтов. Больше всего его выделяют монтмориллонитовые глины, а меньше всего — каолинитовые. Также значительна роль и обменных катионов. Если в породе содержится магний или кальций, то тепловыделение будет большим, чем при содержании калия и натрия.

Но вот обнаружилось, что в сухих лёссовых грунтах при увлажнении выделяется теплота, не только связанная со смачиванием, но и обусловленная разрушением структуры. Причем величина последней часто оказывается преобладающей. Так грунт становится источником тепла.



  • Моя коллекция
  • Добавить образец
  • Добавить месторождение
  • Предложить новость
  • Управление рассылкой
  • Профайл